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Abstract
The evidence of the vortex glass phase has been obtained by analysing the nonlinear magnetic
response of type-II superconductors. The method introduced here is based on a combined
frequency dependence analysis of the real and imaginary part of the 1st and 3rd harmonics of
the AC magnetic susceptibility. The analysis has been performed by taking into account both
the components and the Cole–Cole plots (i.e. the imaginary part as a function of the real part).
Numerical simulations have been used to identify the fingerprints of the magnetic behaviour in
the vortex glass phase. These characteristics allowed the vortex glass phase to be distinguished
from the other disordered phases, even those showing similar electrical properties. Finally, this
method has been successfully applied to detecting the vortex glass phase in an YBCO bulk
melt-textured sample.

1. Introduction

Experimental and theoretical studies on the ‘effective zero
resistance’ in the voltage–current characteristics of type-II
superconductors, are widely reported in the literature [1].
Huse et al [2] argued for the existence of a second order
thermodynamic phase transition between a vortex phase, with
a small but nonzero resistivity, and a truly superconducting
phase, named vortex glass, with no mobile vortices and thus
strictly zero resistivity. In this latter phase, the vortices
were supposed frozen into a configuration determined by the
competition between the interactions of the vortices with each
other and with the microscopic impurities in the material [2].
The Kim–Anderson model [3] is generally used to describe
the vortex dynamics, and in particular the thermal activation
processes (flux creep [4]) in the phase with nonzero resistance,
whereas several models [5–7], e.g. the vortex glass collective
creep models [8], have been developed to explain the resistivity
approaching zero, characteristic of the vortex glass phase.
These two different approaches are mainly distinguished by
the dependence of the pinning potential (Up) on the current
density (J ): a linear Up(J ) is supposed in the Kim–Anderson
model whereas all the vortex glass models are characterized
by a nonlinear Up(J ). Consequently, in the presence of a
vortex glass phase, a negative curvature has to be detected in a

1 Author to whom any correspondence should be addressed.

logI –logV plot [2], for a temperature T lower than the vortex
glass phase transition temperature, Tg, in sharp contrast with
the Kim–Anderson Flux Creep prediction, which generates a
positive curvature [3, 4].

In the literature there is an open question about the
interpretation of the glass like behaviour of the vortex
matter. Some experimental evidence can be found about
this phase transition. Koch et al [9] showed a negative
curvature in a temperature range T < Tg in the voltage–
current characteristics measured on epitaxial YBCO film
samples, which can be interpreted in terms of the vortex
glass phase. They also measured the critical exponents
which are consistent with those expected for this phase
transition [5, 9]. Nevertheless, the interpretation of the Koch
experimental data [9] is controversial: Coppersmith et al
[10] and Landau et al [11, 12] showed that the standard
Kim–Anderson approach, modified with a inhomogeneous
pinning potential, Up(x), depending on the spatial position
x , also reproduced the qualitative features of Koch’s V –I
characteristics [9], and in particular the negative curvature in
the E–J curves at low temperatures, thus leaving still open
the real interpretation of Koch’s data [12]. In this sense,
the voltage–current characteristics are not suitable for clearly
identifying the presence of a vortex glass phase.

Here we show an innovative method to identify the vortex
glass phase, based on the analysis of the nonlinear magnetic
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response of the samples, in particular on the frequency
dependence of the fundamental and higher harmonics of the
AC magnetic susceptibility, at a fixed amplitude of the AC
magnetic field. Moreover, comparing numerical results and
experimental data, obtained on a YBCO melt-textured sample,
we report the detection of the vortex glass phase in the analysed
material.

2. Simulations of harmonics of the AC magnetic
susceptibility

The 1st and 3rd harmonics of the AC magnetic susceptibility
as a function of temperature have been simulated by integrating
the one-dimensional nonlinear diffusion equation (x = linear
dimension, t = time) for the magnetic field inside the sample
(B) [13]:

∂ B

∂ t
= ∂

∂x

[(
ρ (B, J, T )

μ0

) (
∂ B

∂x

)]
(1)

where ρ(B, J, T ) is the resistivity associated with the vortex
movements. This one-dimensional equation describes the
behaviour of an infinite slab well, so it can be used to analyse
the magnetic response of a sample which can be approximated
by it. An equivalent one-dimensional equation is also used to
describe the magnetic response of an infinitely long cylinder.

From equation (1), the field profiles B(x, t) inside the
sample have been computed and the spatial mean 〈B(t)〉 of
B(x, t) has been obtained, which represents the magnetic
induction field inside the sample. The corresponding
magnetization M is computed as follows:

M = 〈B(t)〉 − Hext, (2)

where Hext is the external magnetic field; in this case, in
absence of a DC field:

Hext = hAC cos(ωt) = Re
{
hACeiωt

} ≡ Re
{ ≈

H
}
. (3)

The magnetization, in terms of the Fourier components, can be
written as follows:

M(t) =
∑

n

Mn cos (ωn + ϕn) = Re
{

Mnei(ωn+ϕn)
}

≡ Re
{ ≈

M
}
. (4)

Finally, the complex AC magnetic susceptibility is computed
as:

χAC =
≈
M
≈
H

, (5)

the 1st and 3rd harmonics corresponding to n = 1 and 3 in the
Fourier components of the magnetization, respectively. Further
details about the numerical computation of the harmonics of
the AC magnetic susceptibility starting from (1) are in [13].

Several ρ(B, J, T ) dependences on the field (B),
temperature (T ) and current density (J ) have been investigated,
corresponding to different V –I characteristics [13–17].

Here we report the simulations obtained by using the
formula [5, 18]:

ρ(B, J, T ) = ρFF(B, T )e
−

(
Up(J,T )

kB T

)
. (6)

In (6) ρFF(B, T ) is the flux flow resistivity, given by the
Bardeen Stephen model [1, 19]:

ρFF (B, T ) = ρn(T )
B

Hc2(T )
, (7)

where ρn is resistivity in the normal state (in the present
simulation: ρn(T ) = 40 + 2.2 × 10−1[T + 273.16 K])
and Hc2(T ) is the temperature dependent upper critical field,
chosen as in [13, 20]:

Hc2(T ) = Hc2(0)

[
1 −

(
T
Tc

)2
]

[
1 +

(
T
Tc

)2
] , (8)

where Hc2(0) = 112 T, which is a typical value for YBCO
bulk samples [13].

The Up(T, J ) in the equation (6) is the pinning
potential [1, 5], which depends on the temperature and the
current density (in the absence of the DC field):

Up(T, J ) = U0 f (T )F(J, T ). (9)

The current density dependence of Up is associated with
the vortex dynamics and in particular to the Flux Creep
models. In order to probe different flux creep models, previous
studies [14–16] have been performed, also based on the
analysis of the 1st and 3rd harmonics Cole–Cole plots, but at
a fixed frequency and various amplitudes of the AC magnetic
field. The previous analysis of the harmonics dependence on
the amplitude of the AC magnetic field [14–16], performed
by using the same numerical technique as the present work,
showed that, in order to reproduce the experimental curves
measured on some type-II superconductors, in particular
YBCO and MgB2, a further dependence on hAC had also to
be included in the pinning potential: Up ∝ h−β

AC , through a
parameter β [15, 16]. Depending on the β value, a similar
general behaviour was detected in the curves simulated with
all the considered flux creep models [14–16]. Nevertheless,
a preliminary qualitative agreement [16] has been obtained
between the experimental data [14, 15] and the numerical
curves [16] simulated by including the vortex glass flux creep,
at different regimes depending on the material. In the present
simulations, this amplitude dependence has not been taken into
account, the curves being simulated at a fixed hAC (so that just
a constant value should be included).

In the numerical computations, the following density
current dependence has been used [8]:

F(J, T ) = 1

μ

[(
Jc (T )

J

)μ

− 1

]
, (10)

with different μ values: 1/7 for single vortex, 3/2 for small
bundle, 7/9 for large bundle vortex glass collective flux
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Figure 1. Imaginary part of the 1st harmonics as a function of the
temperature as simulated by using the vortex glass collective creep in
the small bundle regime, at various frequencies. The curves obtained
for the single vortex and large bundle regimes (not reported) show
similar qualitative behaviour.

creep [8] and −1 corresponding to the linear Kim–Anderson
Flux Creep model [3], whereas the phenomenological
model [5] F(J, T ) = ln( Jc(T )

J ), corresponding to μ → 0 in
the (10) has not been considered here. Jc in equation (10) is
the critical current density [1, 5].

On the other side, the temperature dependence of Up and
Jc is related to the flux pinning model. The behaviour of
the harmonics with different pinning models has been already
investigated [13]. Here we only report the results obtained by
choosing the δl-type collective pinning [21, 5]. This choice
is justified by the previously reported [22] strong evidence for
the importance of δl pinning in stoichiometric yttrium-based
superconductors. Moreover, an experimental confirmation of
the validity of this pinning model was also previously obtained
in a polycrystalline YBCO sample obtained from the same
batch as the one measured in this work [23]. For these
reasons, the following temperature dependences were used in
the numerical simulations here shown:

Up(T ) ∝
[

1 −
(

T

Tc

)4
]

≡ f (T ) (11)

Jc (T ) = Jc(0)

[
1 −

(
T
Tc

)2
]5/2

[
1 +

(
T
Tc

)2
]1/2

. (12)

Moreover, U0 and Jc(0) are the pinning potential and the
critical current density at T = 0, H = 0, J = 0, respectively.
The values of the parameters used in the simulations are:
Tc = 91.6 K, Jc(0) = 109 A/(m2), and U0/kB = 1.6 × 104 K.
These parameters have been experimentally obtained on the
sample analysed in the present work. In particular, Tc and Jc(0)

have been measured by magnetization curves, whereas U0/kB

has been obtained by a combined analysis of the 1st and 3rd
harmonics of the AC magnetic susceptibility [24].

Figure 2. Temperature dependence of the imaginary part of the 1st
harmonics at various frequencies, simulated by using the
Kim–Anderson model.

We performed simulations at a fixed amplitude of the AC
magnetic field (hAC = 4 Oe), without a DC field, at various AC
frequencies (ν = 10.7, 107, 1070 Hz), by choosing the above
mentioned different Flux Creep models.

3. Numerical results

In this section, we summarize the comparison between all
the numerically obtained results, in order to identify the
fingerprints of the vortex glass phase.

3.1. The vortex glass models versus the homogeneous
Kim–Anderson case

A preliminary analysis based on numerical simulation has been
previously performed [25]. Here we also report the main
results obtained, in order to clearly identify the characteristics
of the vortex glass phase with respect to the other disordered
phases. In figure 1, the temperature dependence of the
imaginary part of the 1st harmonics, at various frequencies of
the AC magnetic field, is shown, as simulated in the vortex
glass collective creep model, in the small bundle regime.
Similar results have been also obtained for single vortex [25]
and large bundle regimes (not reported). The same conditions
are used to simulate the 1st harmonics in the framework of the
Kim–Anderson model, as reported in figure 2.

From figure 1, we can observe that, in the vortex glass
phase, for increasing frequencies, the temperature of the peak
in the imaginary part of the 1st harmonics, Tp, shifts towards
higher temperatures and the height of the peak, χ ′′

1 (Tp), grows.
Nevertheless, in the Kim–Anderson model (figure 2), Tp also
shifts towards higher temperatures if ν is increased, but χ ′′

1 (Tp)

decreases.
On the contrary, no qualitative differences can be observed

in the behaviour of the real part of the 1st harmonics at various
frequencies, in both models [25]. The opposite behaviour with
the frequency in the Kim–Anderson Creep and the vortex glass
models can be also detected if we analyse the 1st harmonics
Cole–Cole plots, as shown in figure 3.

In fact, the height of the maximum in the 1st harmonics
Cole–Cole plots decreases for increasing frequencies in

3
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Figure 3. 1st harmonics Cole–Cole plots at various frequencies, simulated by using the Kim–Anderson model (a) and vortex glass collective
creep model, respectively, in the single vortex (b), small bundle (c) and large bundle regime (d).

Figure 4. Temperature dependence of the real part of the 3rd
harmonics at various frequencies, as simulated with the vortex glass
collective creep model in the small bundle regime.

the Kim–Anderson model, whereas an opposite behaviour
characterizes the vortex glass models, in all regimes.

A similar analysis can be also performed on the higher
harmonics of the AC magnetic susceptibility. The main
differences between the vortex glass and the ‘resistive’ phase
can be seen if we observe the real part, χ ′

3(T ), of the 3rd
harmonics, whereas a similar behaviour has been detected in
the imaginary part of the 3rd harmonics [25].

In figure 4, the real part of the 3rd harmonics of the
AC susceptibility simulated in the vortex glass phase (in the
small bundle regime) are shown, at various frequencies. In
figure 5 the corresponding curves, as obtained by using the
Kim–Anderson model, are reported.

Figure 5. Temperature dependence of the real part of the 3rd
harmonics at various frequencies, as obtained by using the
Kim–Anderson model.

From figures 4 and 5, we observe that, in all the considered
models, χ ′

3(T ) shows a minimum and a maximum, both
depending on the frequency. Nevertheless, for increasing
frequencies, in the glass phase the absolute value of the
minimum grows and the maximum decreases, whereas the
behaviour is opposite in the Kim–Anderson framework.

A more distinct frequency response can be seen in the
3rd harmonics Cole–Cole plots, reported in figure 6 for all the
considered models.

From figure 6 we observe that the 3rd harmonics Cole–
Cole plots point towards the right semi-plane progressively for
increasing frequencies in the Kim–Anderson model, whereas
they tend to the left semi-plane in the vortex glass phase, for
all the regimes.

In conclusion, we can state that the frequency dependence
of the imaginary part of the 1st harmonics and the real part
of the 3rd harmonics, together with both the 1st and 3rd
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Figure 6. 3rd harmonics Cole–Cole plots at various frequencies, simulated by using (a) the Kim–Anderson model and (b)–(d) the vortex glass
collective creep model, respectively in the single vortex (b), small bundle (c) and large bundle (d) regime.

harmonics Cole–Cole plots, without a DC field, allow one to
distinguish a vortex glass phase from the phase described by
the Kim–Anderson model.

3.2. A comparison between the vortex glass and the
inhomogeneous Kim–Anderson case

In the literature [11, 12], the standard Kim–Anderson
approach, modified with an inhomogeneous pinning potential,
U(x), is supposed to be equivalent to the vortex glass collective
creep, because it reproduces some qualitative features of the
voltage–current characteristics, associated with the occurrence
of a vortex glass phase [2].

The choice of the U(x) dependence does not influence the
main features of the analysis [12] but, in order to reproduce the
Koch [9] V –I characteristics, it is also necessary to include
a further temperature dependence, strictly connected to the x-
dependence [12]. According to [12], we chose the following
model for U(x, T ):

U(x, T ) ∝
(

|x | − a

[
1 −

(
T

Tc

)]k

x2

)
≡ h(x, T ) (13)

where x = 0 corresponds to the semi-thickness of the sample.
The parameters used in our simulations are: a = 1 and

k = 1.5 [12].
In figure 7 the imaginary part of the 1st harmonics and the

real part of the 3rd harmonics as a function of the temperature
are reported at various frequencies, as simulated with this
inhomogeneous pinning model within the Kim–Anderson
framework. The corresponding 1st and 3rd harmonics Cole–
Cole plots are plotted in figure 8.

It is possible to see that the imaginary part of the 1st
harmonics is characterized by a positive peak shifting towards
higher temperatures with a decreasing height, for increasing

Figure 7. Imaginary part of the 1st harmonics (a) and real part of the
3rd harmonics (b) as a function of the temperature, simulated by
using an inhomogeneous Kim–Anderson model at various
frequencies.

frequencies. Moreover, two peaks can be distinguished in
the real part of the 3rd harmonics: for increasing frequencies
the height of the positive peak near Tc increases, whereas the
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Figure 8. 1st (a) and 3rd (b) harmonics Cole–Cole plots at various
frequencies, computed by using an inhomogeneous Kim–Anderson
model.

height of the negative peak at lower temperatures decreases
in absolute value. The 1st harmonics Cole–Cole plots are
characterized by a maximum which decreases for increasing
frequencies, whereas the 3rd harmonics Cole–Cole plots tend
to the right semi-plane for higher frequencies. All these
dependences are similar to the results obtained with the
standard Kim–Anderson model, and are opposite to the curves
simulated with the Vortex Glass models.

Therefore, from this analysis, it is possible to conclude
that the vortex glass phase has a different behaviour with
respect to a phase described by the Kim–Anderson Flux Creep
model, both in the homogeneous and inhomogeneous case.

4. A method to detect the vortex glass phase

Summarizing the previous results, a good method to identify
a vortex glass phase is to analyse the behaviour of the
harmonics of the AC magnetic susceptibility by changing
the frequency of the AC magnetic field, without a DC field.
In particular, a vortex glass phase can be detected if, for
increasing frequencies:

(1) in the imaginary part of the 1st harmonics versus T , the
height of the peak increases;

(2) in the real part of the 3rd harmonics versus T , the absolute
value of the minimum at low temperatures grows and the
height of the maximum near Tc decreases;

(3) in the 1st harmonics Cole–Cole plots, the height of the
maximum increases;

(4) the 3rd harmonics Cole–Cole plots point towards the left
semi-plane.

Figure 9. Imaginary part of the 1st harmonics (a) and real part of the
3rd harmonics (b) as a function of the temperature, as measured on
an YBCO sample at various frequencies and at a fixed amplitude of
the AC magnetic field.

The harmonics described by the Kim–Anderson model
have an opposite behaviour in all these cases. This analysis
furnishes a method to experimentally detect a vortex glass
phase by magnetic measurements, thus overcoming the
problem connected to the ‘real zero resistivity’ in the direct
transport measurements.

5. Experimental evidence of the vortex glass phase

The above introduced method is quite general and it could
be applied to any type-II superconductors. Here we used
it to analyse the experimental results obtained on an YBCO
bulk melt-textured sample. The measured sample was a
melt grown YBCO sample, cut as an almost homogeneous
slab (2 mm × 3.1 mm × 4.8 mm), obtained from the same
batch previously analysed [26]. An home made susceptometer
was used to measure the 1st and 3rd harmonics of the AC
magnetic susceptibility as a function of the temperature at
various frequencies (ν = 10.7, 107, 1607 Hz) and amplitudes
(hAC) of the AC magnetic field, both with and without an
external DC field (HDC). The harmonics have been measured
by applying both the AC and the DC magnetic fields parallel to
the longitudinal axis of the sample.

In figure 9, the imaginary part of the 1st harmonics and the
real part of the 3rd harmonics are plotted at various frequencies
as a function of the temperature. In figure 10, the 1st and
3rd harmonics Cole–Cole plots are shown, as measured at the
same conditions. In figure 11, the imaginary part of the 1st
harmonics and the 1st harmonics Cole–Cole plots are shown,

6
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Figure 10. 1st (a) and 3rd (b) harmonics Cole–Cole plots, as
measured on the YBCO sample at various frequencies.

as measured at various amplitudes of the AC field, at a fixed
frequency and without a DC field.

The data reported in figures 9–11 suggest that the
effects due to an eventual granularity, which could exist
in our sample [27, 28], are not present. In fact, as it is
known [1, 29, 30], in the case of a granular sample, the
AC magnetic response is characterized by two contributions,
i.e. the inter-grain and the intra-grain components. These
can be seen as a double peak in the imaginary part of
the 1st harmonics versus temperature curves (as well as a
corresponding double-step transition in χ ′

1(T )), and as two
joined dome shaped curves in the 1st harmonics Cole–Cole
plots. From figures 9–11, we deduced that the effects of
granularity can be neglected, even if external parameters like
the amplitude and the frequency of the AC magnetic fields
are changed. The absence of the granularity has also been
confirmed through measurements in the presence of different
DC fields (not shown here).

From figures 9 and 10 we observe that all the
characteristics of the vortex glass phase, described in the
previous section, have been detected. In particular, in the 3rd
harmonics for increasing frequencies the absolute value of the
minimum at low temperatures grows, the maximum near Tc

decreases, and the Cole–Cole plots tend toward the left semi-
plane. Moreover, the presence of the vortex glass phase is
also confirmed by a slightly, but still evident, growth of the
maximum in χ ′

1(T ) and of the maximum in the 1st harmonics
Cole–Cole plots with the frequency.

Figure 11. Imaginary part of the 1st harmonics (a) and 1st harmonics
Cole–Cole plots (b) measured on YBCO melt-textured at various
amplitudes of the AC magnetic field, without a DC field.

Figure 12. 3rd harmonics Cole–Cole plots, measured at a fixed
frequency and amplitude of the AC magnetic field, at various DC
fields, measured on the same YBCO sample: the half cardioid/lent
shaped curves are in agreement with the simulations [31] obtained by
including the bulk screening.

It is worth underlining that this behaviour in the 3rd
harmonics Cole–Cole plots could also be interpreted in terms
of a edge barrier. In order to exclude this possibility, we
also performed some measurements of harmonics at various
DC fields. In figure 12 the 3rd harmonics Cole–Cole plots
are reported, at various DC fields up to 400 Oe, as measured
at a fixed AC field. The comparison between these curves
and the simulations reported in [31] suggest that the surface
effects can be disregarded. In fact, our curves have a lent/half
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cardioid shape, lie in a single quadrant, and behave almost
independently of the applied DC field. All these characteristics
are common to the curves simulated in [31] in the case of a
bulk pinning, and are totally different from those simulated
in presence of edge effects that are cardioid in both the semi-
planes.

On the basis of this analysis and by using the method
introduced in section 4, we finally conclude that the data
reported here in figures 9 and 10 are experimental evidence of
the occurrence of a vortex glass phase in a YBCO melt-textured
sample, with negligible granularity and surface effects.

6. Conclusions

We introduced an effective method to identify the vortex glass
phase in a type-II superconductor, based on the nonlinear
magnetic response of the samples. In order to develop
this method, numerical simulations of the harmonics of the
AC magnetic susceptibility have been performed, at various
frequencies of the AC magnetic field, by using different flux
creep and flux pinning models. In particular, we demonstrated
that the frequency dependence in the magnetic response
simulated by using the Kim–Anderson flux creep model (both
considering the homogeneous and the inhomogeneous flux
pinning model) is different from the magnetic behaviour in the
vortex glass phase. Moreover, thanks to a comparison between
numerical results and experimental data, the vortex glass phase
has been successfully detected in an YBCO bulk sample.
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